Unlocking the Potential of NDUFA7: A Drug Target and Biomarker for Energy Metabolism
Unlocking the Potential of NDUFA7: A Drug Target and Biomarker for Energy Metabolism
Introduction
NADH (nicotinamide adenine dinucleotide) is a crucial coenzyme found in all living cells that plays a central role in energy metabolism. NAD+ is a dinucleotide, consisting of two nucleotides joined together, and it is a key electron carrier in various cellular processes, including the production of ATP from ADP using ATP synthase. NADH is also an essential cofactor for the enzyme respiratory chain complex, which is responsible for the final step of cellular energy metabolism, the production of ATP from NAD+ and FAD (flavin adenine dinucleotide).
NDUFA7, or NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 7, 14.5kDa, is a protein that belongs to the ubiquinone enzyme family, which catalyzes the dehydrogenation of NADH to NAD+. This reaction is critical for the production of ATP from NADH, as NADH is the most abundant source of electrons for the cell during periods of energy demand.
The identification of NDUFA7 as a drug target and biomarker for energy metabolism has significant implications for the development of new treatments for various diseases associated with energy metabolism disorders. In this article, we will explore the structure and function of NDUFA7, its potential as a drug target, and its potential as a biomarker for assessing the effectiveness of such treatments.
Structure and Function
The NDUFA7 protein is a 14.5kDa protein that contains 115 amino acid residues. It belongs to the ubiquinone enzyme family and is localized to the endoplasmic reticulum (ER) and the mitochondria (MT). NDUFA7 is a member of the alpha subcomplex of the NADH dehydrogenase complex, which consists of four subunits: NDUFA1 (NADH dehydrogenase subunit alpha), NDUFA2 (NADH dehydrogenase subunit beta), NDUFA3 鈥嬧??(NADH dehydrogenase subunit gamma), and NDUFA4 (NADH dehydrogenase subunit delta).
The function of NDUFA7 is to catalyze the dehydrogenation of NADH to NAD+ using ATP and FAD as co-factors. This reaction takes place in the cytoplasm of the cell and is shown in the figure below:
[Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture Picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture : insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert Picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture : insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert Picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture : insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert Picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture : insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert Picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture : insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert Picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture : insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert Picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture : insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert Picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture : insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert picture: insert Picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture : Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture: Insert picture:
Protein Name: NADH:ubiquinone Oxidoreductase Subunit A7
Functions: Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
More Common Targets
NDUFA8 | NDUFA9 | NDUFAB1 | NDUFAF1 | NDUFAF2 | NDUFAF3 | NDUFAF4 | NDUFAF4P1 | NDUFAF5 | NDUFAF6 | NDUFAF7 | NDUFAF8 | NDUFB1 | NDUFB10 | NDUFB11 | NDUFB2 | NDUFB2-AS1 | NDUFB3 | NDUFB4 | NDUFB5 | NDUFB6 | NDUFB7 | NDUFB8 | NDUFB9 | NDUFC1 | NDUFC2 | NDUFC2-KCTD14 | NDUFS1 | NDUFS2 | NDUFS3 | NDUFS4 | NDUFS5 | NDUFS6 | NDUFS7 | NDUFS8 | NDUFV1 | NDUFV2 | NDUFV2P1 | NDUFV3 | NEAT1 | NEB | NEBL | NECAB1 | NECAB2 | NECAB3 | NECAP1 | NECAP2 | NECTIN1 | NECTIN2 | NECTIN3 | NECTIN3-AS1 | NECTIN4 | NEDD1 | NEDD4 | NEDD4L | NEDD8 | NEDD8-activating enzyme E1 | NEDD8-MDP1 | NEDD9 | NEFH | NEFHP1 | NEFL | NEFM | NEGR1 | NEGR1-IT1 | NEIL1 | NEIL2 | NEIL3 | NEK1 | NEK10 | NEK11 | NEK2 | NEK2-DT | NEK3 | NEK4 | NEK5 | NEK6 | NEK7 | NEK8 | NEK9 | NELF Complex | NELFA | NELFB | NELFCD | NELFE | NELL1 | NELL2 | NEMF | NEMP1 | NEMP2 | NEMP2-DT | NENF | NEO1 | NEPRO | NES | NET1 | NETO1 | NETO1-DT | NETO2 | Netrin receptor